Группа ученых Уральского отделения РАН и Уральского федерального университета синтезировала новые вещества для применения в качестве полупроводников в различных органических оптоэлектронных устройствах. Ученые получили производные триазолоптеридина — трициклического продукта на основе азотсодержащего гетероциклического соединения пиримидина. Статья о проведенной работе опубликована в журнале Dyes and Pigments.
«Прежде всего, нас интересовало, насколько эффективно новые вещества поглощают и испускают свет, а также проводят электрический ток. В ходе исследований мы определили общие тенденции влияния природы заместителей на поглощение и испускание полученных соединений. Это было нужно для того, чтобы впоследствии смещать полосы поглощения и испускания в нужную область, например, в область солнечного излучения, и применять данные соединения в качестве красителей для солнечных батарей. Так, мы обнаружили, что введение заместителей в пиразиновый цикл триазолоптеридиновой системы оказывает более значительное влияние на свойства соединений, чем заместитель в триазольном кольце», — комментирует Денис Газизов, младший научный сотрудник Института органического синтеза им. И. Я. Постовского УрО РАН, руководитель исследований.
Также химики выяснили, что у некоторых производных триазолоптеридина значительное изменение спектра поглощения и испускания световой энергии происходит в присутствии небольшого количества, порядка 100-миллионных долей, органических пероксидов (перекисей).
«Это является предпосылкой к разработке на основе полученных соединений сенсоров на органические пероксиды, которые не только широко используются в производстве полимеров, но и являются легковоспламеняющимися, взрывоопасными и токсичными веществами», — подчеркивает Герман Лебедкин, инженер-исследователь Лаборатории медицинской химии и перспективных органических материалов УрФУ, участник исследовательской группы.
Более того, некоторые из синтезированных соединений продемонстрировали хорошую подвижность носителей заряда, как электронного, так и дырочного типа.
«Это величина, которая характеризует полупроводниковые свойства — то, насколько хорошо вещество проводит электрический ток. Полученные значения оказались сопоставимы с широко используемыми нефуллереновыми акцепторами. Наконец, полученные соединения оказались достаточно термостабильными в атмосфере воздуха. Это также является их преимуществом, так как зачастую материалы на основе органических молекул характеризуются химической неустойчивостью и, соответственно, очень небольшим циклом жизни», — добавляет Денис Газизов.
Все это, по словам Газизова, открывает перспективу использования синтезированных веществ в качестве полупроводниковых материалов в органических оптоэлектронных устройствах, в первую очередь — в солнечных батареях.
Комментарии